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Objectives

• Study impinging jets, with N2 as the working fluid, under sub
and supercritical conditions.

• Vary jet velocity and chamber pressure to identify conditions
where impact waves became prominent, for a single geometry.

• Study the flow field with high speed back light imaging.
Perform dynamic mode decomposition (DMD) analysis to
extract natural frequencies.

• Study the response of the flow field when driven by acoustic
speakers at low amplitude, high frequency standing wave in
pressure anti-node and pressure node configuration.
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Impinging Jet Injector

Features

• An injector design where fluid jets strike
each other.

• An impingement sheet is formed and
impact waves, or surface waves, develop
on the surface

• The impinging jet injectors are used to
atomize storable liquid rocket engine
fuels. They are desirable because of their:

– Simplicity

– Low manufacturing cost

– Good atomization and mixing

• Highly susceptible to instabilities

Chihiro Inoue
Department of Aeronautics and Astronautics
University of Tokyo

Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333



4

Experimental Facility

Features

– Two piezosirens designed for high pressure operation.

– Accurate control of frequency and amplitude of the standing wave. Within ± 0.1 Hz
frequency.

– Multiple high-speed pressure transducers

– A low flow pressurization – accurate control of pressure.

• Subcritical and supercritical pressures

– Heat changers to create liquid nitrogen – accurate control of temperature to within ±5 K.

– On-axis windows for shadowgraph and Schlieren.
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Operating Conditions

• Vary chamber pressure until impact waves, or
surface waves, became prominent on the
impingement sheet.

– Jet velocities from 0.5 to 15 m/s

– Chamber pressures of 0 to 4.8 MPa

• The conditions where impact waves were
prominent were for jet velocities of 2 to 5 m/s and
chamber pressures of 1 to 1.37 MPa (150 to 200
Psi).

– 2 m/s and Chamber pressure of 1.37 MPa was
selected for further study (Re # = 7800 and We #
= 270).

• High speed back-light images were captured at
25kHz.

• N2 jet temperature was kept at a constant 95 K.

• Orifice diameter 0.5 mm (0.02in), pre-impingement
length 8 l/D and 5 l/D channel length.

• Impingement half angle is 30 degrees.
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Forcing Conditions

• Pressure node (PN) and pressure antinode (PAN) at the injector
location

• Forcing frequency ~ 3000 Hz

• Pressure fluctuation amplitudes (peak-to-peak) range up to
approximately 9 psi (2% of Chamber Pressure)

Pressure Node
PN

Velocity Node

PAN
Imposes 
unsteady 

backpressure

Imposes transverse 
velocity oscillation
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Parametric Sweep Sub-Critical 
Results

5 m/s 7 m/s

1.72 MPa (250 Psi)
10 m/s 20 m/s

• A droplet size decreases as jet velocity increases
• There are no noticeable structures on the impingement sheet.
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Parametric Sweep Sub-Critical 
Results

5 m/s 7 m/s

2.58 MPa (375 Psi)
10 m/s 20 m/s

• Transition to a fine mist occurs at lower velocities at high
pressures.
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Parametric Sweep Super-Critical 
Results

Differences between subcritical:

• The interface between the surrounding the impingement sheet
seem blurred.

• No structure were noticed on the impingement sheet.

5 m/s 7 m/s 10 m/s

4.82 MPa (700 Psi)
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Parametric Sweep 2 m/s Results

• The jet velocity was kept at a constant 2 m/s
• The chamber pressure was increased close to supercritical pressure.
• Impact waves appeared for a narrow range of operating conditions.

0.34 MPa 0.68 MPa 1 MPa

1.37 MPa 2.75 MPa2 MPa
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Dynamic Mode Decomposition
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Extract spectrally-pure temporal modes with detailed spatial mode 
shapes
• Schmid (2010) and Rowley et al. (2009)
• Employ time-averaged amplitude measurement described by

Alenius (2014)
• 1500 samples used

Time average image 
subtracted from 

data

Amplitude of mode at t = 0

Accounts for growth of 
mode in time as well as 

temporal frequency

Complex spatial 
mode shape

Properties of DMD
• Isolates response of flow at forcing frequency and harmonics
• Single modes can reconstruct convective processes (POD requires two modes)
• Less efficient at reconstructing signal energy compared to POD
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DMD Result, Unforced

• The jet was kept at a constant 2 m/s at chamber pressure of 1.37 MPa.
• DMD was applied only on the impingement sheet.
• Impact waves were not a dominant feature of the flow field based on the DMD analysis.
• There is a large amount of variability as to when the impact wave detaches and

convective velocity.

4822 Hz
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PAN Acoustic Forcing

~ 1 PSIA

Pressure antinode (PAN)
forcing @ 2950 Hz

Pressure node (PN)
forcing @ 3110
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Acoustic Forcing: Max

PAN Forcing 
𝑃𝑃′

1
2𝜌𝜌𝑢𝑢

2 = 58.1 

PN Forcing 
𝑃𝑃′

1
2𝜌𝜌𝑢𝑢

2 = 40 

• Impact waves appear to vanish at a critical pressure forcing amplitude. The
forcing amplitude is different for PAN and PN forcing.
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Forcing PAN:  Results 

Real Imaginary Real Imaginary

𝑃𝑃′
1
2𝜌𝜌𝑢𝑢

2 = 9.13 
𝑃𝑃′

1
2𝜌𝜌𝑢𝑢

2 = 15.52 

• Impact waves are still present at low level PAN forcing.
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Forcing PAN:  Results

Real Imaginary Real Imaginary

𝑃𝑃′
1
2𝜌𝜌𝑢𝑢

2 = 34.3 
𝑃𝑃′

1
2𝜌𝜌𝑢𝑢

2 = 58.1 

• Impact waves structures have vanished from the impingement sheet.
• Cyclical mass flow variations dominant the flow field.
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Forcing PN:  Results

Real Imaginary Real Imaginary

𝑃𝑃′
1
2𝜌𝜌𝑢𝑢

2 = 9.13
𝑃𝑃′

1
2𝜌𝜌𝑢𝑢

2 = 15.5 

• The impingement sheet responses at lower pressure amplitudes when subjected to
PN forcing.
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Forcing PAN:  Results

Real Imaginary Real Imaginary

𝑃𝑃′
1
2𝜌𝜌𝑢𝑢

2 = 37.6 𝑃𝑃′
1
2𝜌𝜌𝑢𝑢

2 = 40 

• A swig-swag pattern dominants the impingement sheet. The impingement point moves due to the jets being
displaced.

• Impact waves also vanished at a critical pressure amplitude and ligaments are shed due to acoustic forcing.
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Phased Average: Max Forcing

PAN Forcing 
𝑃𝑃′

1
2𝜌𝜌𝑢𝑢

2 = 58.1 

PN Forcing 
𝑃𝑃′

1
2𝜌𝜌𝑢𝑢

2 = 40 

• For the PAN forcing, a large group of droplets are shed at the acoustic forcing
frequency due to mass flow variations.

• A swig-swag pattern is present when the impingement sheet is subjected to
PN forcing.
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Conclusions, unforced

• Impact waves, or surface waves, appeared in a narrow
range of operating conditions for the given injector.

• Dynamic mode decomposition was unable to detect a
strong natural frequency associated with impact waves.

• For supercritical conditions the injection process and the
emerging fluid has to be modelled differently compared
to sub-critical conditions

• There is large amount of variability from the flow field
(convective velocity or ligament separation) to detect a
single, strong natural frequency associated with impact
wave conditions
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Conclusions, forced

• The impingement sheet couples with the acoustics at a certain
level of acoustic amplitude

– The critical pressure amplitude is different for PAN and PN
forcing.

• Dynamic mode decomposition detected the onset of the
coupling and higher harmonics when the forcing was greater
than the critical pressure amplitude

• PAN forcing:

– Mass flow variations

– Due to the klystron effect results in a “Christmas tree” look.

• PN Forcing

– Results in a swig-swag pattern on the impingement sheet

– Probably due to a impingement point physically moving
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